3.2.97 \(\int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx\) [197]

3.2.97.1 Optimal result
3.2.97.2 Mathematica [C] (verified)
3.2.97.3 Rubi [A] (verified)
3.2.97.4 Maple [B] (verified)
3.2.97.5 Fricas [C] (verification not implemented)
3.2.97.6 Sympy [F]
3.2.97.7 Maxima [F]
3.2.97.8 Giac [F]
3.2.97.9 Mupad [F(-1)]

3.2.97.1 Optimal result

Integrand size = 28, antiderivative size = 85 \[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=\frac {2 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}} \]

output
2/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2* 
d*x+1/2*c),2^(1/2))/d/e^2/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)-4/5*I*(a^2 
+I*a^2*tan(d*x+c))/d/(e*sec(d*x+c))^(5/2)
 
3.2.97.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.99 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.34 \[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=-\frac {i \sqrt {2} a^2 \left (\frac {e e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{3/2} \left (1+e^{2 i (c+d x)}\right )^{3/2} \left (3 \sqrt {1+e^{2 i (c+d x)}}+2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )}{15 d e^4} \]

input
Integrate[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(5/2),x]
 
output
((-1/15*I)*Sqrt[2]*a^2*((e*E^(I*(c + d*x)))/(1 + E^((2*I)*(c + d*x))))^(3/ 
2)*(1 + E^((2*I)*(c + d*x)))^(3/2)*(3*Sqrt[1 + E^((2*I)*(c + d*x))] + 2*Hy 
pergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/(d*e^4)
 
3.2.97.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3042, 3977, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3977

\(\displaystyle \frac {a^2 \int \frac {1}{\sqrt {e \sec (c+d x)}}dx}{5 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int \frac {1}{\sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {a^2 \int \sqrt {\cos (c+d x)}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{5 d (e \sec (c+d x))^{5/2}}\)

input
Int[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(5/2),x]
 
output
(2*a^2*EllipticE[(c + d*x)/2, 2])/(5*d*e^2*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c 
 + d*x]]) - (((4*I)/5)*(a^2 + I*a^2*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(5/ 
2))
 

3.2.97.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3977
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^( 
n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m))   Int[(d*Sec[e + f*x]) 
^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] 
&& EqQ[a^2 + b^2, 0] && GtQ[n, 1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || 
 (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILtQ[m, 0] & 
& LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) 
&& IntegerQ[2*m]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.2.97.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (99 ) = 198\).

Time = 13.22 (sec) , antiderivative size = 324, normalized size of antiderivative = 3.81

method result size
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}+2\right ) a^{2} \sqrt {2}}{5 d \,e^{2} \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (-\frac {2 \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}{e \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {e \,{\mathrm e}^{3 i \left (d x +c \right )}+e \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) a^{2} \sqrt {2}\, \sqrt {e \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{5 d \,e^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(324\)
default \(\frac {2 i a^{2} \left (\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-2 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+2 F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-2 \left (\cos ^{3}\left (d x +c \right )\right )-2 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sec \left (d x +c \right ) F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-2 \left (\cos ^{2}\left (d x +c \right )\right )-i \sin \left (d x +c \right )\right )}{5 e^{2} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}}\) \(441\)
parts \(\text {Expression too large to display}\) \(869\)

input
int((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/5*I*(exp(I*(d*x+c))^2+2)/d*a^2*2^(1/2)/e^2/(e*exp(I*(d*x+c))/(exp(I*(d* 
x+c))^2+1))^(1/2)-1/5*I/d*(-2*(e*exp(I*(d*x+c))^2+e)/e/(exp(I*(d*x+c))*(e* 
exp(I*(d*x+c))^2+e))^(1/2)+I*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I*(exp 
(I*(d*x+c))-I))^(1/2)*(I*exp(I*(d*x+c)))^(1/2)/(e*exp(I*(d*x+c))^3+e*exp(I 
*(d*x+c)))^(1/2)*(-2*I*EllipticE((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2) 
)+I*EllipticF((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))))*a^2*2^(1/2)/e^2 
/(exp(I*(d*x+c))^2+1)/(e*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)*(e*exp 
(I*(d*x+c))*(exp(I*(d*x+c))^2+1))^(1/2)
 
3.2.97.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.11 \[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=\frac {2 i \, \sqrt {2} a^{2} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (-i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{5 \, d e^{3}} \]

input
integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
1/5*(2*I*sqrt(2)*a^2*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4 
, 0, e^(I*d*x + I*c))) + sqrt(2)*(-I*a^2*e^(3*I*d*x + 3*I*c) - I*a^2*e^(I* 
d*x + I*c))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))/(d* 
e^3)
 
3.2.97.6 Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=- a^{2} \left (\int \left (- \frac {1}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\right )\, dx + \int \frac {\tan ^{2}{\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \left (- \frac {2 i \tan {\left (c + d x \right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\right )\, dx\right ) \]

input
integrate((a+I*a*tan(d*x+c))**2/(e*sec(d*x+c))**(5/2),x)
 
output
-a**2*(Integral(-1/(e*sec(c + d*x))**(5/2), x) + Integral(tan(c + d*x)**2/ 
(e*sec(c + d*x))**(5/2), x) + Integral(-2*I*tan(c + d*x)/(e*sec(c + d*x))* 
*(5/2), x))
 
3.2.97.7 Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(5/2), x)
 
3.2.97.8 Giac [F]

\[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(5/2), x)
 
3.2.97.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((a + a*tan(c + d*x)*1i)^2/(e/cos(c + d*x))^(5/2),x)
 
output
int((a + a*tan(c + d*x)*1i)^2/(e/cos(c + d*x))^(5/2), x)